1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
| def height(A): if A: return A.height else: return -1
class Binary_Node: def __init__(A, x): A.item = x A.left = None A.right = None A.parent = None A.subtree_update()
def subtree_update(A): A.height = 1 + max(height(A.left), height(A.right))
def skew(A): return height(A.right) - height(A.left)
def subtree_iter(A): if A.left: yield from A.left.subtree_iter() yield A if A.right: yield from A.right.subtree_iter()
def subtree_first(A): if A.left: return A.left.subtree_first() else: return A
def subtree_last(A): if A.right: return A.right.subtree_last() else: return A
def successor(A): if A.right: return A.right.subtree_first() while A.parent and (A is A.parent.right): A = A.parent return A.parent
def predecessor(A): if A.left: return A.left.subtree_last() while A.parent and (A is A.parent.left): A = A.parent return A.parent
def subtree_rotate_right(D): if D.left: B, E = D.left, D.right A, C = B.left, B.right D, B = B, D D.item, B.item = B.item, D.item B.left, B.right = A, D D.left, D.right = C, E if A: A.parent = B if E: E.parent = D
def subtree_rotate_left(B): if B.right: A, D = B.left, B.right C, E = D.left, D.right B, D = D, B B.item, D.item = D.item, B.item D.left, D.right = B, E B.left, B.right = A, C if A: A.parent = B if E: E.parent = D
def rebalance(A): if A.skew == 2: if A.right.skew() < 0: A.right.subtree_rotate_right() A.subtree_rotate_left() elif A.skew() == -2: if A.left.skew() > 0: A.left.subtree_rotate_left() A.subtree_rotate_right()
def maintain(A): A.rebalance() A.subtree_update() if A.parent: A.parent.maintain()
def subtree_insert_before(A, B): if A.left: A = A.left.subtree_last() A.right, B.parent = B, A else: A.left, B.parent = B, A A.maintain()
def subtree_insert_after(A, B): if A.right: A = A.right.subtree_first() A.left, B.parent = B, A else: A.right, B.parent = B, A A.maintain()
def subtree_delete(A): if A.left or A.right: if A.left: B = A.predecessor() else: B = A.successor() A.item, B.item = B.item, A.item return B.subtree_delete() if A.parent: if A is A.parent.left: A.parent.left = None else: A.parent.right = None A.maintain() return A
class BST_Node(Binary_Node): def subtree_find(A, k): if k < A.item.key: if A.left: return A.left.subtree_find(k) elif k > A.item.key: if A.right: return A.right.subtree_find(k) else: return A return None
def subtree_find_next(A, k): if A.item <= k: if A.right: return A.right.subtree_find_next(k) else: return None elif A.left: B = A.left.subtree_find_next(k) if B: return B return A
def subtree_find_prev(A, k): if A.item >= k: if A.left: return A.left.subtree_find_prev(k) else: return None elif A.right: B = A.right.subtree_find_prev(k) if B: return B return A
def subtree_insert(A, B): if B.item < A.item: if A.left: A.left.subtree_insert(B) else: A.subtree_insert_before(B) elif B.item > A.item: if A.right: A.right.subtree_insert(B) else: A.subtree_insert_after(B) else: A.item = B.item
class Binary_Tree: def __init__(T, Node_Type=Binary_Node): T.root = None T.size = 0 T.Node_Type = Node_Type
def __len__(T): return T.size
def __iter__(T): if T.root: for A in T.root.subtree_iter(): yield A.item
class Set_Binary_Set(Binary_Tree): def __init__(self): super().__init__(BST_Node)
def iter_order(self): yield from self
def build(self, X): for x in X: self.insert(x)
def find_min(self): if self.root: return self.root.subtree_first().item
def find_max(self): if self.root: return self.root.subtree_last().item
def find(self, k): if self.root: node = self.root.subtree_find(k) if node: return node.item
def find_next(self, k): if self.root: node = self.root.subtree_find_next(k) if node: return node.item
def find_prev(self, k): if self.root: node = self.root.subtree_find_prev(k) if node: return node.item
def insert(self, x): new_node = self.Node_Type(x) if self.root: self.root.subtree_insert(new_node) if new_node.parent is None: return False else: self.root = new_node self.size += 1 return True
def delete(self, k): if self.root: node = self.root.subtree_find(k) if node: ext = node.subtree_delete() if ext.parent is None: self.root = None self.size -= 1 return ext.item
|